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Data 1s All You Need

* Machine learning is data-hungry.

Deep learning
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§ n do you need very large data to train?
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Yes, training a large language model like myself typically requires a very large
amount of data. The more data the model is trained on, the more accurate and
robust it can become in its understanding of language and ability to generate
coherent text.
N
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Amount of data




But... Where 1s Data?
* Widely spread as data silos

* hospitals
M &

Millions of Facebook user records
exposed in data breach
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* mobiles
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0 the data ever leaving the devices or servers themselves.
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[1] Kairouz, Peter, et al. "Advances and open problems in federated learning." arXiv preprint arXiv:1912.04977 (2019).



FedAvgl?!

* A de facto federated learning approach.
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l @ Update model with local data

@ Send local models to the server
@ Update the global model

[2] McMahan, H. Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." AISTATS 2017

@ Send the global model to the selected parties




Label

Non-IID Data in Real World

Label distribution skew
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Non-IID Data Challenge in FL

8@ @8 @ lID setting non-lID setting wy W
1

@local model @ global model

@ Send the global model to the selected parties . .
local optima A global optima

@ Update model with local data
@ Send local models to the server

@ Update the global model




Solving Non-1ID 8;%% %;@8
+ Based on FedAvg D D D

—
[ —— @ Send the global model to the selected parties

@ @ Update model with local data
l @ Send local models to the server

@ @ Update the global model
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Solving Non-IID 8@8 8@8
» Based on FedAvg @G @é

* FedProx!”l
* Add L2 regularization

For FedProx:
, 2
L(w;b) = Z(m,y)@b 8(w;x;y)+‘§ Jw — th

° SCAFFOLD[B], FedNoval4l. .. (1) Send the global model to the selected parties

@ Update model with local data

@ Send local models to the server
@ Update the global model

[2] Li, Tian, et al. "Federated optimization in heterogenecous networks." Proceedings of Machine Learning and Systems 2 (2020): 429-450.
[3] Karimireddy, Sai Praneeth, et al. "Scaffold: Stochastic controlled averaging for federated learning." International Conference on Machine Learning. PMLR, 2020.
[4] Wang, Jianyu, et al. "Tackling the objective inconsistency problem in heterogeneous federated optimization." Advances in neural information processing systems 33 (2020): 7611-7623.




Results

FedAvg SCAFFOLD

FMNIST 88.1% + 0.6% 88.1% +0.9% 88.4% +0.5% 88.5% + 0.5%
CIFAR-10 68.2% +0.7% 679% +0.7% 69.8% +0.7% 66.8% + 1.5%
SVHN 86.1% + 0.7% 86.6% £ 0.9% 86.8% £ 0.3% 86.4% * 0.6%

Limited improvement!




Federated Deep Learning on Non-IID Data

 FedProx

* Regularization based on model-parameters

* Deep Learning -> Representation Learning
* Regularization based on representation?

Encoder Classifier




Observation

* The model trained on a global dataset 1s able to extract a better feature
representation than the model trained in a skewed subset.

class ID
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(c) FedAvg global model (d) FedAvg local model 12




Model-Contrastive Learning (MOON)!4.

* Idea: maximize the agreement of representation learned by the current
local model and the representation learned by the global model.

local model t-1

B basec encoder

[ [
| I—I |:| : BN projection head
[ I

_________ Paffw‘ ' .

/7 output layer

exp(sim(z, 24i0b)/T)

e S ——— log - ;
: con exp(sim(z, z4i0b)/T) + exp(sim(2, Zprev)/T)
:
A .: o l_ocgl_lo_ss_ o
________________________ =% model-contrastive loss !
: + |

local model t

[4] Li, Qinbin, Bingsheng He, and Dawn Song. "Model-Contrastive Federated Learning." CVPR 2021. 13




MOON

* Lightweight modifications to FedAvg --- Simple and Effective.

Algorithm 1: The MOON framework

Input: number of communication rounds 7',
number of parties /N, number of local
epochs E, temperature 7, learning rate 7,
hyper-parameter

Output: The final model w?’

1 Server executes:
2 initialize w"
3 fort=0,1,....T —1do
4 for: =1,2,..., N in parallel do
Same as FedAv A
s send the global model w' to P;
6 w! + PartyLocalTraining(i, w?)
T z
7 | wttl SN %wi_
$ return w’
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PartyLocalTraining(i, w?):

w! +— w'

for epochi =1,2,..., E do

for each batch b = {z,y} of D" do

Usup < CrossEntropyLoss(Fyt(z),y)

Z Rw_f (.’L‘)

Zglob < th (.’L‘)
Zprev < Ru,f—l (.’L‘)
gcon <

exp(sim(z,zg10p)/7)

— log

exp(sim(z,zg10b)/7)+exp(sim(z,zprev ) /T)

{ fsup + lﬁgcon

w; < w; — VL

20 return w! to server

Contrastive
loss

14



Experiments

* Baselines: SOLO, FedAvg, FedProx!>l, SCAFFOLD!®]
* Datasets: CIFAR-10, CIFAR-100, Tiny-ImageNet
 Partition: Dirichlet distribution

* To be practical: 1) Effectiveness 2) Efficiency 3) Robustness
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[5] Li, Tian, et al. “Federated optimization in heterogeneous networks.” MLSys 2020.

[6] Karimireddy, Sai Praneeth, et al. "SCAFFOLD: Stochastic controlled averaging for federated learning." ICML 2020.
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Accuracy

* 10 parties

Method CIFAR-10 CIFAR-100 | Tiny-Imagenet

MOON 69.1%+0.4% | 67.5%+0.4% | 25.1%=+0.1%
FedAvg 66.3%+10.5% 64.5% +0.4% 23.0%+0.1%
FedProx 66.9%+0.2% 64.6%+0.2% 23.2%=+0.2%
SCAFFOLD | 66.6%40.2% | 52.5% £0.3% | 16.0%=+0.2%

SOLO 46.3% +£5.1% | 22.3%+1.0% 8.6%1-0.4%

About 2-3% accuracy improvement.

16
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(c) Tiny-Imagenet

* Number of rounds to achieve the same target performance.

Method CIFAR-10 CIFAR-100 Tiny-Imagenet
#rounds | speedup | #rounds | speedup | #rounds | speedup
FedAvg 100 1 100 1 x 20 1 x
FedProx 52 1.9% 75 1.3x 17 1.2x
SCAFFOLD 80 1.3x ~ <1x ~ <1x
MOON 27 3.7x 43 2.3 % 11 1.8

MOON i1s much more communication-efficient

17



Scalability

Method #parties=50 #parties=100
100 rounds | 200 rounds | 250 rounds | 500 rounds
MOON (p=1) 54.7% 58.8% 54.5% 58.2%
MOON (p=10) 58.2% 63.2% 56.9% 61.8%
FedAvg 51.9% 56.4% 51.0% 55.0%
FedProx 52.7% 56.6% 51.3% 54.6%
SCAFFOLD 35.8% 44 9% 37.4% 44.5%
SOLO 10%40.9% 7.3%+0.6%
60 601
R 50, & 501
§4o- §40-
5 5 301
§ 301 §
— 20 — 201
o ; a
O 10+ R —— MOON (u=1) —~ = FedProx O 10 K X = MOON (u=1) == FedProx
+ A A MOON (u=10) —- SCAFFOLD + S [ MOON (u=10) ~—-  SCAFFOLD
01 e —— FedAvg 0. i —— FedAvg
" ® #Communication rounds " ¥Communication rounds .
(a) 50 parties (b) 100 parties (sample fraction=0.2)

About 6-7% accuracy improvement.
18



Model Averaging

* Learning a common P (y|x)

A

=

!

X

]
 Non-1ID Features

* Pi(x) # P(x), Pi(ylx) # P (y|x)

oono
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oono




Adversarial Collaborative Learning L’}

* Learning a common task-specific representation distribution
* Pi(z) = Pi(2)
ok I Base encoder L

I Projection head / '\
server .
E E Predictor
1l

discriminator : Gk
—f discriminator -
< | [iff “
H )
Representations outputs targets

(a) Step 1: The server sends the discriminator to the parties. (b) Step 2: The parties update their local models

=2

YcE

I~ /\
E ﬁ E - Representations server Representations 1
[ 1]

@ _ —> discriminator — . .

T P / : : :
H —I~I Representations N

outputs targets

(c) Step 3: The parties send representations to the server. (d) Step 4: The server updates the discriminator.

[7] Li, Qinbin, Bingsheng He, and Dawn Song. “Adversarial Collaborative Learning on Non-IID Features.” ICML 2023.




Theoretical Analysis

* Convergence

Theorem 1. We use Py, to denote the distribution of the representations generated in party ¢ and
Pg, (z) is the probability of representation z in distribution Pg,. Then, the optimal discriminator D*

of Equation (4) is

P,

~ Gk (Z) ) ( 5)
Zizl Pg, (Z)
Theorem 2. Given the optimal discriminator D* from Equation (5), the global minimum of Equation
(3) is achieved if and only if

Di(z) =

Pg, =PFPg,=---=FPgy (6)

Theorem 3. Suppose Pf is the optimal solution shown in Theorem 2. If G; (Vi € [1, N]) and D
have enough capacity, and Pg, is updated to minimize the local objective (i.e., Equation (3)), given
the optimal discriminator D* from Equation (5), then Pg, converges to ..

* Generalization error

21



Accuracy

Digits MNIST SVHN USPS SynthDigit MNIST_M AVG
SOLO 87.9%+0.4% | 34.8%+0.8% | 94.8%+0.1% | 63.0%+0.4% | 67.2%=+0.4% | 69.5%=0.3%
FedAvg 94.4%4+0.5% | 59.4%+09% | 94.3%+0.2% | 74.4%+0.5% | 70.3%+t1.2% | 78.6%+0.6%
FedBN 94.1%4+0.8% | 59.9%+0.7% | 94.1%+0.1% | 73.9%+0.6% | 71.3%+t1.1% | 78.7%+0.6%

PartialFed | 94.7%+0.4% | 59.4%+0.6% | 94.2%+0.1% | 75.2%+0.4% | 69.7%+0.6% | 78.6%=+0.4%
FedProx 94.1%+0.4% | 59.8%+0.6% | 94.3%40.1% | 73.4%=+0.3% | 71.6%+0.9% | 78.6%+0.4%

Per-FedAvg | 88.9%+0.7% | 36.6%+t1.3% | 89.5%+0.2% | 58.3%+0.7% | 54.5%+1.3% | 65.6%=+0.8%
FedRep 92.6%+0.2% | 42.0%+1.0% | 93.1%+0.1% | 61.1%40.5% | 50.8%+1.4% | 67.9%+0.8%
ADCOL 94.7%4+0.6% | 58.2%+1.0% | 95.4%+0.2% | 76.0%+0.3% | 76.7%+0.8% | 80.2%+0.5%




Communication Efficiency

Digits MNIST | SVHN [ USPS [ SynthDigit | MNIST M | AVG
FedAvg 11 54 5 11 7 28
FedBN 11 73 5 68 7 22
4communication PartialFed 9 23 6 14 8 14
round FedProx 64 42 8 12 10 31
Per-FedAvg ~ ~ ~ ~ ~ ~
FedRep ~ ~ ~ ~ ~ ~
ADCOL 19 86 6 19 9 21
FedAvg 3.12 15.34 1.42 3.12 1.99 7.95
FedBN 3.12 20.73 1.42 19.31 1.99 6.25
o PartialFed 2.56 6.53 1.70 3.98 2.27 3.98
COTir;e”?(‘}Cgt)‘O“ FedProx 1818 | 11.93 | 227 341 2.84 8.80
Per-FedAvg ~ ~ ~ ~ ~ ~
FedRep ~ ~ ~ ~ ~ ~
ADCOL 0.21 0.95 0.07 0.21 0.10 0.23
Speedup 14.95x | 16.21x | 21.52x 14.95x 20.08x 34.42x




Federated Learning Systems

* TensorFlow-Federated, PySyft, FATE...

“

what about trees?

¢

‘/

.
2l <.1!

Syft + Grid




Tree Models are Powertul and Efficient

Credit risk assessment, pricing...
Age<90? split node [:] leaf node

Y N ML/Sys
Paper 20735 researcher?

accepted? Y N

Y~ N (0234 ) [ -0.568 |

[ 0.664 | | -0.345 |

sepsis, cardiovascular...

¥p = 0.664 + 0.234 = 0.898

GBDT (8

kaggle champions

[8] Chen, Tiangi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.




Centralized GBDT training

data
= ety Uy ~(t—1) 1. Compute —
Yi glt=1) (yz’ Y ) Histogram | cut points gradients
~(t—1 \/
h — aA(t 1)l(y 7y( )) histogram

B .\
{ (Z gk, Z hk) } 5511&2 [leaf Value]
1 =1

kel kel 2. Update tree /\
g _ (> ier, 9i)° N (> icry, 91)° data; ) ( datag age
2uer, it A e hi A oL 21
V = — ZiEI i 35
Zie[ hi + A 0
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Histogram-based Learning

* Histogram concatenation

N H' H? H<
— (Z Jk Z h'k)v"'v ( Z Jk Z hk):|
kel! ker! kell, keIl _
N
= U HY
j=1
* Histogram summation
B H_/
- — HH
S [ >PoF o0 /I BN LN .
jE[Nlker?  jE€IN] kel ., JEI] —




Framework

* Instead of transferring data/model, we transfer histograms for training.

@ Initialization QLocal cqmputation Q@ Aggregation @ Update
4 N/

— e
Round 1 Round 2
function [ statistic privacy enhancement




Privacy

* Label privacy
* Additively homomorphic encryption
| |

H ||H]|

23141
0.02 —  ° 13242

-0.13 89839

]
]




e ——————E—————
Privacy

* Histogram Privacy
* Secure Aggregation

| |
HZ%HZ—Fijij—ijﬂ a;+01 == b, —01

a, + 0.2 b, — 0.2
 Differential Privacy

H' «+ H' + Lap(0, 2£)




Optimization

 Computation (Q'

* Node-level & feature-level parallelism A A
ke [l
« Communication PR BN HHIG
* Batching @Compute] | 1
histogram G| [G, Al
G81 GBL' G31 GBi
@ Group \
histograms \ v/
B, -+ B; Gy|-|Gg, Gy| - GB:I
!

SCerver




FedTreel®

/ CLI & Python Interface N Frameworks
n_parties=10

. Horizontal FL Vertical FL
mode=horizontal
Federated Ensemble Learning
g D2\ )/

+ +
/ Env1ronment \ -

—————————— nhanceme

| 1lals |

| 2 =~ ! _

| O = i@% : Secure Aggregation
Standalone | TV |
simulation L(_:li‘{s___G_P PE_: Differential Privacy

gRPCL— \gRPC
1= . g
D =g D Homomorphic Encryption

\ Distributed computing /

[9] Li, Qinbin, et al. "FedTree: A Federated Learning System For Trees." Proceedings of Machine Learning and Systems 5 (2023).




Usage
Two lines

Installation

git clone —recursive https://github.com/Xtra-Computing/FedTree.git
cd FedTree && mkdir build && cd build && cmake .. && make -j

2

Prepare the Configuration File

data=/dataset/credit/credit_vertical_p1l.csv
n_parties=2

num_class=2

mode=vertical

data_format=csv

objective=binary:logistic
privacy_tech=none

learning_rate=0.1

n_trees=10

ip_address=127.0.0.1

Prediction of default of credit card clients

Better results than local training

Get Results

AUC=0.770339
AUC=0.771878
AUC=0.774684
AUC=0.775256
AUC=0.776345

L)

Run

./build/bin/FedTree-distributed-server ./example/credit/credit_vertical_p0.conf

./build/bin/FedTree-distributed-party ./example/credit/credit_vertical_p0.conf 0

./build/bin/FedTree-distributed-party ./example/credit/credit_vertical_p1.conf 1

Run a single-line command in each machine



Evaluation

 Machine: 1) sismulation: 4x AMD EPYC 7543 CPUs + 4x NVIDIA
A100 GPUs 2) distributed deployment: 8 machines, each has 2x Intel
Xeon E5-2680 v4 CPUs

* Baselines: 1) XGBoost!!% 2) FATE!!113) SOLO 4) FEL!
e Tabular datasets: breast, a9a, cod-rna, mnist, abalone

[10] Chen, Tiangi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.
[11] Liu, Yang, et al. "Fate: An industrial grade platform for collaborative learning with data protection." The Journal of Machine Learning Research 22.1 (2021): 10320-10325.

[12] Zhao, Lingchen, et al. "Inprivate digging: Enabling tree-based distributed data mining with differential privacy." IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018.



Accuracy
Datasets Centralized Horizontal FL Vertical FL

XGBoost| | FedTree | |[FedTree+SA| FATE SOLO FEL | FedTree | |[FedTree+HE| FATE SOLO FEL
breast 1.0 1.0 1.0 0.995 0.999 1.0 1.0 1.0 1.0 0.944  0.988
a9a 0.902 0.902 0.902 0.902 0.883 0.896 | 0.902 0.902 0.902 0.608 0.573
cod-rna 0.993 0.993 0.993 0.992 0968 0977 | 0.993 0.993 0.993 0.667 0.754
mnist 0.983 0.983 0.983 X 0.926 0.943 | 0.983 0.983 0.983 0.759 0.822
abalone 0.078 0.079 0.079 0.080 0.085 0.289 | 0.078 0.078 0.078 0.138  0.266

Same with centralized training!




EfﬁClency Training time (s) per tree
Horizontal FL Vertical FL
Datasets
FedTree @ FATE Speedup FedTree FATE  Speedup
breast 0.117 1.97 16.8x 0.90 1.73 1.9x
: : a9a 0.289 18.41 63.7x 6.46 55.31 8.6x
simulation
cod-rna 0.388 25.84 66.6x 4.22 104.59 24.8x
mnist 8.102 529.49 65.6x 274.42  790.37 2.9x
abalone 0.075 1.55 20.7x 0.877 3.10 3.5x
Horizontal FL Vertical FL
Datasets
FedTree @ FATE Speedup FedTree FATE  Speedup
breast 0.22 10.30 46.8x 1.49 4.72 3.2x
a9a 0.66 23.51 35.6x 8.03 29.13 3.6x
distributed
cod-rna 0.34 27.43 80.7x 9.99 52.50 5.3x
mnist 25.9 838.04 32.4x 22.77 506.42 22.3x
abalone 0.29 6.39 22.0x 2.06 5.39 2.6x



Ablation study - Batching

Total communication time (s) and communication size (MB)

Horizontal FedTree Vertical FedTree
Datasets
w/o LBC wLBC speedup size w/oLBC wLBC speedup size
breast 8.82 4.64 1.9x 204 16.301 5.26 3.1x 23.5
a9a 11.72 4.04 2.9x 14.2 21.56 6.16 3.5x 27.0
cod-rna 12.42 54 2.3x 334 55.46 14.22 3.9x 48.5
mnist 30.16 8.15 3.7x 57.3 80.26 16.72 4.8x 594

abalone 13.156 5.06 2.6x 329 13.61 5.67 2.4x 43.3




Industry Applications

* Energy prediction, anomaly detection...

amazon ® @ w wyﬁ’ N\l SINGAIPOIRE
FedML  MICO5S[]
ENN GROUP

* Follow our code!
* https://github.com/Xtra-Computing/FedTree




Federated Learning Systems
oo FedML P —

FATE FedML PaddleFL
Fedlearner™ 1 ?
Fedlearner TFF Flower
o
. @ C ryp e n FedTree
FLUTE CrypTen FedTree
- FQ
edScale O
FederatedScope
FedScale FederatedScope
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Platform for Federated T .earnino Svstems — UniFed!!]
UniFed Wizard

FLF Choose a framework, Generate the config, Run FL experiments

rced

Framework *

Fate =

19:48:10
172.31.0.109:9100 == 172.31.0.114
172.31.0.62:9100 172.31.0.74:4
172.311.237:9100 == 172.31.1.75:

== 172.31.0.36:9100 64
172.31.1.227:9100 (f()]lﬁ(’

=]

raml 172.3110.56:9100 = 172.3110.6 Algorithm * v
‘ 172.3112105:9100 = 172.31121

¥ Memory error.required-not-set
4.000 GiB
2.000 GiB
19:48:10
e= 172.31.0.109:9100 == 172.31.0.114 e 172.31.0.36:9100
172.31.0.62:9100 172.31.0.74:4 Mode * — 172.311.227:9100

Network 10 (bytes)

error.required-not-set

sa2mMB __, .

0B
19:48:10

e= 172.31.0.109:9100 == 172.31.0.114
172.31.0.62:9100 172.31.0.74:4

Jolb

[13] Liu, Xiaoyuan, et al. "Unifed: A benchmark for federated learning frameworks." arXiv preprint arXiv:2207.10308 (2022).

== 172.31.0.36:9100
172.31.1.227:9100

For how to run local experiments with the UniFed toolkit, read more -

40



Future Directions

4 I
Incentive
Heterogeneous participants Fairness
\ )
Unif
Heterogeneous “data” Privz:Icy
4 I
Adaptation

Heterogeneous hardware

RTX 3080

Synchronization




Foundation models

Why do we need federated learning
since there are already powerful models?




“Monopoly” by Companies

Contributing Data & Resources 0




Private Domains

* Federated Fine-Tuning of Foundation Models

l l

/.|.\ __
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. __________________________________________________________
Takeaway

* Non-IID data 1s a key challenge 1n FL

* Comparing representations helps a lot!

* Deep learning models are powerful

* Tree 1s a good option for FL deployment
 FL+LLMs 1s challenging!

Thank you!




