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Data is All You Need
• Machine learning is data-hungry.
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Deep learning
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But… Where is Data?
• Widely spread as data silos
• hospitals

• mobiles
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Federated Learning
• Definition[1]: Federated learning is a machine learning setting where multiple 

entities (clients) collaborate in solving a machine learning problem without 
exchanging the raw data, under the coordination of a central server or service 
provider。
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[1] Kairouz, Peter, et al. "Advances and open problems in federated learning." arXiv preprint arXiv:1912.04977 (2019).
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FedAvg[2]
• A de facto federated learning approach.

5
[2] McMahan, H. Brendan, et al. "Communication-efficient learning of deep networks from decentralized data."  AISTATS 2017



Non-IID Data in Real World
Label distribution skew
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Non-IID Data Challenge in FL
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Solving Non-IID

• Based on FedAvg
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Solving Non-IID

• Based on FedAvg

• FedProx[2]

• Add L2 regularization

• SCAFFOLD[3], FedNova[4]…
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[2] Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine Learning and Systems 2 (2020): 429-450.
[3] Karimireddy, Sai Praneeth, et al. "Scaffold: Stochastic controlled averaging for federated learning." International Conference on Machine Learning. PMLR, 2020.
[4] Wang, Jianyu, et al. "Tackling the objective inconsistency problem in heterogeneous federated optimization." Advances in neural information processing systems 33 (2020): 7611-7623.



Results

Dataset FedAvg FedProx SCAFFOLD FedNova
FMNIST 88.1% ± 0.6% 88.1% ± 0.9% 88.4% ± 0.5% 𝟖𝟖. 𝟓% ± 𝟎. 𝟓%

CIFAR-10 68.2% ± 0.7% 67.9% ± 0.7% 𝟔𝟗. 𝟖% ± 𝟎. 𝟕% 66.8% ± 1.5%
SVHN 86.1% ± 0.7% 86.6% ± 0.9% 𝟖𝟔. 𝟖% ± 𝟎. 𝟑% 86.4% ± 0.6%
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Limited improvement!



Federated Deep Learning on Non-IID Data

• FedProx
• Regularization based on model-parameters

• Deep Learning -> Representation Learning
• Regularization based on representation?
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Observation
• The model trained on a global dataset is able to extract a better feature 

representation than the model trained in a skewed subset.
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Model-Contrastive Learning (MOON)[4]
• Idea: maximize the agreement of representation learned by the current 

local model and the representation learned by the global model.

13[4] Li, Qinbin, Bingsheng He, and Dawn Song. "Model-Contrastive Federated Learning." CVPR 2021.



MOON
• Lightweight modifications to FedAvg --- Simple and Effective.
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Same as FedAvg

Contrastive
loss



Experiments
• Baselines: SOLO, FedAvg, FedProx[5], SCAFFOLD[6]

• Datasets: CIFAR-10, CIFAR-100, Tiny-ImageNet
• Partition: Dirichlet distribution
• To be practical: 1) Effectiveness 2) Efficiency 3) Robustness

15

[5] Li, Tian, et al. “Federated optimization in heterogeneous networks.” MLSys 2020.
[6] Karimireddy, Sai Praneeth, et al. "SCAFFOLD: Stochastic controlled averaging for federated learning." ICML 2020.



Accuracy
• 10 parties
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About 2-3% accuracy improvement.



Communication Efficiency

• Number of rounds to achieve the same target performance.
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MOON is much more communication-efficient



Scalability
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About 6-7% accuracy improvement.



Model Averaging

• Learning a common 𝑃(𝑦|𝑥)

• Non-IID Features
• 𝑃4 𝑥 ≠ 𝑃5 𝑥 , 𝑃4 𝑦 𝑥 ≠ 𝑃5(𝑦|𝑥)
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Adversarial Collaborative Learning [7]

• Learning a common task-specific representation distribution
• 𝑃4 𝑧 = 𝑃5(𝑧)

[7] Li, Qinbin, Bingsheng He, and Dawn Song. “Adversarial Collaborative Learning on Non-IID Features.” ICML 2023.



Theoretical Analysis

• Convergence

• Generalization error
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Accuracy

22



Communication Efficiency
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Federated Learning Systems

• TensorFlow-Federated, PySyft, FATE…
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…

what about trees?



Tree Models are Powerful and Efficient
Credit risk assessment, pricing…

sepsis, cardiovascular…
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GBDT [8]

[8] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.



Centralized GBDT training
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Histogram-based Learning

• Histogram concatenation

• Histogram summation

…

𝐇! 𝐇"𝐇#



Framework

• Instead of transferring data/model, we transfer histograms for training.



Privacy

• Label privacy
• Additively homomorphic encryption
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Privacy

• Histogram Privacy
• Secure Aggregation

• Differential Privacy
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Optimization

• Computation
• Node-level & feature-level parallelism

• Communication
• Batching



FedTree[9]

[9] Li, Qinbin, et al. "FedTree: A Federated Learning System For Trees." Proceedings of Machine Learning and Systems 5 (2023).



Usage
Installation

git clone –recursive https://github.com/Xtra-Computing/FedTree.git
cd FedTree && mkdir build  && cd build && cmake .. && make -j

Prepare the Configuration File

Run

Get Results

Prediction of default of credit card clients

Two lines

Run a single-line command in each machine

Better results than local training

data=/dataset/credit/credit_vertical_p1.csv
n_parties=2
num_class=2
mode=vertical
data_format=csv
objective=binary:logistic
privacy_tech=none
learning_rate=0.1
n_trees=10
ip_address=127.0.0.1

./build/bin/FedTree-distributed-server ./example/credit/credit_vertical_p0.conf

./build/bin/FedTree-distributed-party ./example/credit/credit_vertical_p0.conf 0

./build/bin/FedTree-distributed-party ./example/credit/credit_vertical_p1.conf 1

AUC=0.770339
AUC=0.771878
AUC=0.774684
AUC=0.775256
AUC=0.776345



Evaluation

• Machine: 1) simulation: 4x AMD EPYC 7543 CPUs + 4x NVIDIA 
A100 GPUs 2) distributed deployment: 8 machines, each has 2x Intel 
Xeon E5-2680 v4 CPUs
• Baselines: 1) XGBoost[10] 2) FATE[11] 3) SOLO 4) FEL[12]

• Tabular datasets: breast, a9a, cod-rna, mnist, abalone

[10] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.

[11] Liu, Yang, et al. "Fate: An industrial grade platform for collaborative learning with data protection." The Journal of Machine Learning Research 22.1 (2021): 10320-10325.

[12] Zhao, Lingchen, et al. "Inprivate digging: Enabling tree-based distributed data mining with differential privacy." IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018.



Accuracy

Same with centralized training!



Efficiency

simulation

distributed

Training time (s) per tree



Ablation study - Batching
Total communication time (s) and communication size (MB)



Industry Applications
• Energy prediction, anomaly detection…

• Follow our code!
• https://github.com/Xtra-Computing/FedTree
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Federated Learning Systems
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…



Platform for Federated Learning Systems – UniFed[13]

40
[13] Liu, Xiaoyuan, et al. "Unifed: A benchmark for federated learning frameworks." arXiv preprint arXiv:2207.10308 (2022).



Future Directions
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Heterogeneous hardware
Adaptation
Synchronization

Heterogeneous “data”
Unify
Privacy

Heterogeneous participants
Incentive
Fairness



Foundation models
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Why do we need federated learning
since there are already powerful models?



“Monopoly” by Companies
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…

Data & ResourcesContributing



Private Domains

• Federated Fine-Tuning of Foundation Models

44



Takeaway

• Non-IID data is a key challenge in FL
• Comparing representations helps a lot!

• Deep learning models are powerful
• Tree is a good option for FL deployment
• FL+LLMs is challenging!

Thank you!
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