Practical Federated Learning on non-IID Data: Algorithms and Systems

Qinbin Li UC Berkeley

Joint work with Yanzheng Cai, Yiqun Diao, Sixu Hu, Xiaoyuan Liu, Naibo Wang, Zhaomin Wu, Chulin Xie... Quan Chen, Bingsheng He, Bo Li, Dawn Song, Zeyi Wen, ...

Data is All You Need

• Machine learning is data-hungry.

But... Where is Data?

- Widely spread as data silos
 - hospitals

Federated Learning

lea

rat

το ρε

NATIONAL ARTIFICIAL INTELLIGENCE **RESEARCH AND DEVELOPMENT** STRATEGIC PLAN 2023 UPDATE

A Report by the

SELECT COMMITTEE ON ARTIFICIAL INTELLIGENCE of the NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

May 2023

Exe	cutive Summary vii	
Intr	oduction to the National AI R&D Strategic Plan: 2023 Update	
	Al as a National Priority1	
Stra	ategy 1: Make Long-Term Investments in Fundamental and Responsible AI Research	
	Advancing Data-Focused Methodologies for Knowledge Discovery	
- 17	Fostering Federated ML Approaches	
	Understanding Theoretical Capabilities and Limitations of Al4	- 10
1	Pursuing Research on Scalable General-Purpose AI Systems5	
	Developing AI Systems and Simulations Across Real and Virtual Environments	
	Enhancing the Perceptual Capabilities of AI Systems5	
	Developing More Capable and Reliable Robots	_
	Advancing Hardware for Improved Al6	- 11
1	Creating AI for Improved Hardware	_
1	Embracing Sustainable AI and Computing Systems	_
Stra	ategy 2: Develop Effective Methods for Human-AI Collaboration	_
	Developing the Science of Human-Al Teaming9	_
1	Seeking Improved Models and Metrics of Performance10	_
	Cultivating Trust in Human-AI Interactions	
1	Pursuing Greater Understanding of Human-Al Systems10	- 11
1	Developing New Paradigms for AI Interactions and Collaborations10	_
Stra	ategy 3: Understand and Address the Ethical, Legal, and Societal Implications of Al	
	Making Investments in Fundamental Research to Advance Core Values Through Sociotechnical Systems Design and on the Ethical, Legal, and Societal Implications of Al	
	Understanding and Mitigating Social and Ethical Risks of Al	- 11
1	Using AI to Address Ethical, Legal, and Societal Issues	
	Understanding the Broader Impacts of Al	
Stra	ategy 4: Ensure the Safety and Security of AI Systems	

the data ever leaving the devices or servers themselves.

Year

0

FedAvg^[2]

• A de facto federated learning approach.

Non-IID Data in Real World

Label distribution skew

- 40 - 30 Label 10 20 22 ч - 10 - 0 З Party ID Criteo

Feature distribution skew

Quantity skew

Non-IID Data Challenge in FL

Solving Non-IID

• Based on FedAvg

Solving Non-IID

• Based on FedAvg

- FedProx^[2]
 - Add L2 regularization

For FedProx: $L(w; \mathbf{b}) = \sum_{(x,y)\in\mathbf{b}} \ell(w; x; y) + \frac{\mu}{2} \|w - w^t\|^2$

• SCAFFOLD^[3], FedNova^[4]...

1) Send the global model to the selected parties

(2) Update model with local data

(3) Send local models to the server

(4) Update the global model

[2] Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine Learning and Systems 2 (2020): 429-450.

[3] Karimireddy, Sai Praneeth, et al. "Scaffold: Stochastic controlled averaging for federated learning." International Conference on Machine Learning. PMLR, 2020.

[4] Wang, Jianyu, et al. "Tackling the objective inconsistency problem in heterogeneous federated optimization." Advances in neural information processing systems 33 (2020): 7611-7623.

Results

Dataset	FedAvg	FedProx	SCAFFOLD	FedNova
FMNIST	$88.1\% \pm 0.6\%$	$88.1\% \pm 0.9\%$	$88.4\% \pm 0.5\%$	$\textbf{88.5\%} \pm \textbf{0.5\%}$
CIFAR-10	$68.2\%\pm0.7\%$	$67.9\% \pm 0.7\%$	$\mathbf{69.8\%} \pm \mathbf{0.7\%}$	$66.8\% \pm 1.5\%$
SVHN	$86.1\% \pm 0.7\%$	$86.6\% \pm 0.9\%$	$\textbf{86.8\%} \pm \textbf{0.3\%}$	$86.4\% \pm 0.6\%$

Limited improvement!

Federated Deep Learning on Non-IID Data

- FedProx
 - Regularization based on model-parameters
- Deep Learning -> Representation Learning
 - Regularization based on representation?

Observation

• The model trained on a global dataset is able to extract a better feature representation than the model trained in a skewed subset.

Model-Contrastive Learning (MOON)^[4]

• Idea: maximize the agreement of representation learned by the current local model and the representation learned by the global model.

[4] Li, Qinbin, Bingsheng He, and Dawn Song. "Model-Contrastive Federated Learning." CVPR 2021.

MOON

• Lightweight modifications to FedAvg --- Simple and Effective.

Experiments

- Baselines: SOLO, FedAvg, FedProx^[5], SCAFFOLD^[6]
- Datasets: CIFAR-10, CIFAR-100, Tiny-ImageNet
- Partition: Dirichlet distribution
- To be practical: 1) Effectiveness 2) Efficiency 3) Robustness

[5] Li, Tian, et al. "Federated optimization in heterogeneous networks." MLSys 2020.

[6] Karimireddy, Sai Praneeth, et al. "SCAFFOLD: Stochastic controlled averaging for federated learning." ICML 2020.

Accuracy

• 10 parties

Method	CIFAR-10	CIFAR-100	Tiny-Imagenet
MOON	69.1% ±0.4%	67.5% ±0.4%	25.1% ±0.1%
FedAvg	66.3%±0.5%	$64.5\% \pm 0.4\%$	23.0%±0.1%
FedProx	$66.9\% \pm 0.2\%$	$64.6\% \pm 0.2\%$	$23.2\% \pm 0.2\%$
SCAFFOLD	$66.6\% \pm 0.2\%$	$52.5\% \pm 0.3\%$	$16.0\% \pm 0.2\%$
SOLO	46.3% ±5.1%	$22.3\%{\pm}1.0\%$	8.6%±0.4%

About 2-3% accuracy improvement.

Communication Efficiency

• Number of rounds to achieve the same target performance.

Method	CIFAR-10		CIFA	R-100	Tiny-Imagenet		
Wiethou	#rounds	speedup	#rounds	speedup	#rounds	speedup	
FedAvg	100	1×	100	1×	20	1×	
FedProx	52	1.9×	75	1.3×	17	$1.2 \times$	
SCAFFOLD	80	1.3×	/	<1×	/	<1×	
MOON	27	3.7 ×	43	2.3 ×	11	1.8 ×	

MOON is much more communication-efficient

Scalability

Mathod	#parti	es=50	#parties=100		
Method	100 rounds	200 rounds	250 rounds	500 rounds	
MOON (μ =1)	54.7%	58.8%	54.5%	58.2%	
MOON (µ=10)	58.2%	63.2%	56.9%	61.8%	
FedAvg	51.9%	56.4%	51.0%	55.0%	
FedProx	52.7%	56.6%	51.3%	54.6%	
SCAFFOLD	35.8%	44.9%	37.4%	44.5%	
SOLO	10%±	-0.9%	7.3%=	±0.6%	

About 6-7% accuracy improvement.

Model Averaging

• Learning a common P(y|x)

- Non-IID Features
 - $P_i(x) \neq P_j(x), P_i(y|x) \neq P_j(y|x)$

Adversarial Collaborative Learning^[7]

- Learning a common task-specific representation distribution
 - $P_i(z) = P_j(z)$

[7] Li, Qinbin, Bingsheng He, and Dawn Song. "Adversarial Collaborative Learning on Non-IID Features." ICML 2023.

Theoretical Analysis

• Convergence

Theorem 1. We use P_{G_i} to denote the distribution of the representations generated in party *i* and $P_{G_i}(\mathbf{z})$ is the probability of representation \mathbf{z} in distribution P_{G_i} . Then, the optimal discriminator D^* of Equation (4) is

$$D_{k}^{*}(\mathbf{z}) = \frac{P_{G_{k}}(\mathbf{z})}{\sum_{i=1}^{N} P_{G_{i}}(\mathbf{z})}.$$
(5)

Theorem 2. Given the optimal discriminator D^* from Equation (5), the global minimum of Equation (3) is achieved if and only if

$$P_{G_1} = P_{G_2} = \dots = P_{G_N} \tag{6}$$

Theorem 3. Suppose P_G^* is the optimal solution shown in Theorem 2. If G_i ($\forall i \in [1, N]$) and D have enough capacity, and P_{G_i} is updated to minimize the local objective (i.e., Equation (3)), given the optimal discriminator D^* from Equation (5), then P_{G_i} converges to P_G^* .

Generalization error

Accuracy

Digits	MNIST	SVHN	USPS	SynthDigit	MNIST_M	AVG
SOLO	87.9%±0.4%	$34.8\% \pm 0.8\%$	94.8%±0.1%	63.0%±0.4%	67.2%±0.4%	$69.5\% \pm 0.3\%$
FedAvg	94.4%±0.5%	59.4%±0.9%	94.3%±0.2%	74.4%±0.5%	70.3%±1.2%	$78.6\% {\pm} 0.6\%$
FedBN	94.1%±0.8%	59.9 %±0.7%	94.1%±0.1%	73.9%±0.6%	71.3%±1.1%	$78.7\% \pm 0.6\%$
PartialFed	94.7 %±0.4%	59.4%±0.6%	94.2%±0.1%	75.2%±0.4%	69.7%±0.6%	$78.6\% \pm 0.4\%$
FedProx	94.1%±0.4%	59.8%±0.6%	94.3%±0.1%	73.4%±0.3%	71.6%±0.9%	$78.6\% \pm 0.4\%$
Per-FedAvg	88.9%±0.7%	36.6%±1.3%	89.5%±0.2%	58.3%±0.7%	54.5%±1.3%	$65.6\% \pm 0.8\%$
FedRep	92.6%±0.2%	$42.0\% \pm 1.0\%$	93.1%±0.1%	61.1%±0.5%	50.8%±1.4%	$67.9\% \pm 0.8\%$
ADCOL	94.7 %±0.6%	58.2%±1.0%	95.4 %±0.2%	76.0 %±0.3%	76.7 %±0.8%	80.2%±0.5%

Communication Efficiency

Digits		MNIST	SVHN	USPS	SynthDigit	MNIST_M	AVG
	FedAvg	11	54	5	11	7	28
	FedBN	11	73	5	68	7	22
#communication	PartialFed	9	23	6	14	8	14
round	FedProx	64	42	8	12	10	31
100110	Per-FedAvg	/	/	/	/	/	/
	FedRep	/	/	/	/	/	/
	ADCOL	19	86	6	19	9	21
	FedAvg	3.12	15.34	1.42	3.12	1.99	7.95
	FedBN	3.12	20.73	1.42	19.31	1.99	6.25
communication	PartialFed	2.56	6.53	1.70	3.98	2.27	3.98
size (GB)	FedProx	18.18	11.93	2.27	3.41	2.84	8.80
5120 (CD)	Per-FedAvg	/	/	/	/	/	/
	FedRep	/	/	/	/	/	/
	ADCOL	0.21	0.95	0.07	0.21	0.10	0.23
Speedup		14.95x	16.21x	21.52x	14.95x	20.08x	34.42x

Federated Learning Systems

• TensorFlow-Federated, PySyft, FATE...

•••

Tree Models are Powerful and Efficient

Credit risk assessment, pricing...

sepsis, cardiovascular...

kaggle champions

[8] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.

Centralized GBDT training

$$g_{i} = \partial_{\hat{y}^{(t-1)}} l(y_{i}, \hat{y}^{(t-1)})$$
$$h_{i} = \partial_{\hat{y}^{(t-1)}}^{2} l(y_{i}, \hat{y}^{(t-1)})$$
$$\mathbf{H} = \left[\left(\sum_{k \in I_{i}} g_{k}, \sum_{k \in I_{i}} h_{k} \right) \right]_{i=1}^{B}$$
$$S = \frac{\left(\sum_{i \in I_{L}} g_{i} \right)^{2}}{\sum_{i \in I_{L}} h_{i} + \lambda} + \frac{\left(\sum_{i \in I_{R}} g_{i} \right)^{2}}{\sum_{i \in I_{R}} h_{i} + \lambda}$$
$$V = -\frac{\sum_{i \in I} g_{i}}{\sum_{i \in I} h_{i} + \lambda}$$

Histogram-based Learning

• Histogram concatenation

$$\begin{split} \mathbf{H} &= \left[(\sum_{k \in I_1^j} g_k, \sum_{k \in I_1^j} h_k), \dots, (\sum_{k \in I_B^j} g_k, \sum_{k \in I_B^j} h_k) \right]_{j=1}^N \\ &:= \bigcup_{j=1}^N \mathbf{H}^j \end{split}$$

• Histogram summation

$$\mathbf{H} = \left[\left(\sum_{j \in [N]} \sum_{k \in I_i^j} g_k, \sum_{j \in [N]} \sum_{k \in I_i^j} h_k \right) \right]_{i=1}^B = \sum_{j \in [N]} \mathbf{H}_j^{j}$$

Framework

• Instead of transferring data/model, we transfer histograms for training.

Privacy

- Label privacy
 - Additively homomorphic encryption

Privacy

- Histogram Privacy
 - Secure Aggregation

$$\mathbf{H}^{i} \leftarrow \mathbf{H}^{i} + \sum_{j} k_{ij} - \sum_{j} k_{ji} \qquad \mathbf{H}_{1} \qquad \mathbf{H}_{2} \\ \begin{array}{c} \mathbf{h}_{1} + 0.1 \\ a_{1} + 0.1 \\ a_{2} + 0.2 \end{array} + \begin{array}{c} \mathbf{H}_{2} \\ \mathbf{h}_{1} - 0.1 \\ b_{2} - 0.2 \end{array}$$
• Differential Privacy
$$\mathbf{H}^{i} \leftarrow \mathbf{H}^{i} + Lap(0, \frac{2R}{\varepsilon}) \qquad \begin{array}{c} \mathbf{H}_{1} \\ a_{1} \\ + n_{1} \\ a_{2} \\ + n_{2} \end{array}$$

H2

Optimization

- Computation
 - Node-level & feature-level parallelism
- Communication
 - Batching

[9] Li, Qinbin, et al. "FedTree: A Federated Learning System For Trees." Proceedings of Machine Learning and Systems 5 (2023).

Two lines

Installation

git clone -recursive https://github.com/Xtra-Computing/FedTree.git cd FedTree && mkdir build && cd build && cmake .. && make -j

Prepare the Configuration File

data=/dataset/credit/credit_vertical_p1.csv n_parties=2 num_class=2 mode=vertical data_format=csv objective=binary:logistic privacy_tech=none learning_rate=0.1 n_trees=10 ip_address=127.0.0.1

Prediction of default of credit card clients

Better results than local training

Get Results

Run

./build/bin/FedTree-distributed-server ./example/credit/credit_vertical_p0.conf

./build/bin/FedTree-distributed-party ./example/credit/credit_vertical_p0.conf 0

./build/bin/FedTree-distributed-party ./example/credit/credit_vertical_p1.conf 1

Run a single-line command in each machine

Evaluation

- Machine: 1) simulation: 4x AMD EPYC 7543 CPUs + 4x NVIDIA A100 GPUs 2) distributed deployment: 8 machines, each has 2x Intel Xeon E5-2680 v4 CPUs
- Baselines: 1) XGBoost^[10] 2) FATE^[11] 3) SOLO 4) FEL^[12]
- Tabular datasets: breast, a9a, cod-rna, mnist, abalone

[10] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.

[11] Liu, Yang, et al. "Fate: An industrial grade platform for collaborative learning with data protection." The Journal of Machine Learning Research 22.1 (2021): 10320-10325.

[12] Zhao, Lingchen, et al. "Inprivate digging: Enabling tree-based distributed data mining with differential privacy." IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018.

Accuracy

Datasets	Centralized			Horizontal FL					Vertical FL				
Datasets	XGBoost		FedTree	FedTree+SA	FATE	SOLO	FEL	FedTree	FedTree+HE	FATE	SOLO	FEL	
breast	1.0		1.0	1.0	0.995	0.999	1.0	1.0	1.0	1.0	0.944	0.988	
a9a	0.902		0.902	0.902	0.902	0.883	0.896	0.902	0.902	0.902	0.608	0.573	
cod-rna	0.993		0.993	0.993	0.992	0.968	0.977	0.993	0.993	0.993	0.667	0.754	
mnist	0.983		0.983	0.983	X	0.926	0.943	0.983	0.983	0.983	0.759	0.822	
abalone	0.078		0.079	0.079	0.080	0.085	0.289	0.078	0.078	0.078	0.138	0.266	

Same with centralized training!

Efficiency

Training time (s) per tree

	•							
	Datasets	Н	orizontal	FL	Vertical FL			
	Dutusets	FedTree	FATE	Speedup	FedTree	FATE	Speedup	
	breast	0.117	1.97	16.8x	0.90	1.73	1.9 x	
simulation	a9a	0.289	18.41	63.7x	6.46	55.31	8.6x	
Simulation	cod-rna	0.388	25.84	66.6x	4.22	104.59	24.8 x	
	mnist	8.102	529.49	65.6x	274.42	790.37	2.9x	
	abalone	0.075	1.55	20.7x	0.877	3.10	3.5x	
	Datasets	H	orizontal I	FL	Vertical FL			
		FedTree	FATE	Speedup	FedTree	FATE	Speedup	
	breast	0.22	10.30	46.8x	1.49	4.72	3.2x	
aliatuila. ta al	a9a	0.66	23.51	35.6x	8.03	29.13	3.6x	
distributed	cod-rna	0.34	27.43	80.7x	9.99	52.50	5.3x	
	mnist	25.9	838.04	32.4x	22.77	506.42	22.3x	
	abalone	0.29	6.39	22.0x	2.06	5.39	2.6x	

Ablation study - Batching

Total communication time (s) and communication size (MB)

Datasets	Η	Iorizontal 1	FedTree	V	Vertical FedTree			
	w/o LBC	w LBC	speedup	size	w/o LBC	w LBC	speedup	size
breast	8.82	4.64	1.9 x	20.4	16.301	5.26	3.1 x	23.5
a9a	11.72	4.04	2.9 x	14.2	21.56	6.16	3.5x	27.0
cod-rna	12.42	5.4	2.3x	33.4	55.46	14.22	3.9 x	48.5
mnist	30.16	8.15	3.7x	57.3	80.26	16.72	4.8 x	59.4
abalone	13.156	5.06	2.6 x	32.9	13.61	5.67	2.4 x	43.3

Industry Applications

• Energy prediction, anomaly detection...

- Follow our code!
- https://github.com/Xtra-Computing/FedTree

Platform for Federated Learning Systems – UniFed^[13]

Choose a framework, Generate the config, Run FL experiments	orced ration
Framework* Fate	ree", secagg", , - 172.31.0.36:9100 172.311.227:9100
Algorithm*	0 1 :9100 :_horizontal", 2.53:9100 _64_6",
error.required-not-set	
Mode*	- 172.31.0.36:9100 172.31.1.227:9100 172.31.1.227:9100
error.required-not-set	
Request a standard evaluation from UniFed Team	- 172.31.0.36:9100 172.31.1.227:9100
Download the config JSON for local experiments	Setup Loader
For how to run local experiments with the UniFed toolkit read more \rightarrow	munuger

[13] Liu, Xiaoyuan, et al. "Unifed: A benchmark for federated learning frameworks." arXiv preprint arXiv:2207.10308 (2022).

Future Directions

Heterogeneous participants

Incentive Fairness

Unify

Privacy

Heterogeneous "data"

Heterogeneous hardware

Adaptation Synchronization

Foundation models

"Monopoly" by Companies

...

Contributing Data & Resources

Private Domains

• Federated Fine-Tuning of Foundation Models

Takeaway

- Non-IID data is a key challenge in FL
 - Comparing representations helps a lot!
- Deep learning models are powerful
 - Tree is a good option for FL deployment
 - FL+LLMs is challenging!

Thank you!