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Why NLP? First Answer: Gold mines

 Huge amounts of unstructured data

1. “Official” documents, e.g., medical reports, clinical documents

2. User generated content, e.g., blogs, text messages

 Machine Learning in health care still predominantly based on 
structured data, e.g. Electronic Health Records (EHR), 
insurance data

 Take home message: huge opportunities to use such 
unstructured data for better patient care
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Use Case for Clinical Documents: Cancer Care

Diagnosis Phase

Treatment Phase

Post-remission Phase

Multiple tests/biopsies
Surgery/operative reports
Pathology reports

Rounds of chemotheraphy
and/or radiation reports

Family doctor visits 
routine checkup reports 
possible relapses



Use Case for Official Documents: Cancer Care

 Current practice: 

 very siloed, different types of documents rarely linked together

 Used mainly to make the next “local” decisions

 Key findings over the whole journey not consolidated “holistically”

 Documents read/interpreted only by humans

 Lack of health care resources means significant time delay, e.g., many months

 Our ongoing work is to use NLP and machine learning to automatically extract

“fields of interest” from clinical documents

 Improving detection of reportable cancer

 Identifying diagnostic groups

 Predicting treatment response

 Stratifying risks for relapses
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E.g., A Breast Cancer Surgical Report: 
staging, location, size, negation, etc.



Output: an Extracted Table of Fol’s



An Incomplete List of Fields of Interest

 Study #
 Invasive Carcinoma
 Invasive Histologic Type
 Nottingham Score
 Glandular Differentiation
 Nuclear Pleomorphism
 Mitotic Rate
 Histologic Grade
 Tumour Size (mm)
 Tumour Focality
 # of Foci
 Lymphovascular Invasion
 Tumour Site
 Insitu Component
 Insitu Type
 Insitu Nuclear Grade
 Necrosis
 DCIS Extent
 Archtectural Patterns

• Invasive Carcinoma Margins
• Distance from Closest Margin
• Closest Margin

• DCIS Margins
• Distance of DCIS from
• Closest Margin (mm)
• Closest Margin DCIS

• Total LN Examined
• # Sentinel LN Examined
• Micro/macro metastasis
• # LN w/ Micrometastasis
• # LN w/ Macrometastasis
• Size of Largest Macrometastasis Deposit
• Extranodal Extension
• Extent (mm)

• Invasive Tumour Size (mm)
• # Sentinel Nodes Examined
• # Micrometastatic Nodes
• # Macrometastatic Nodes
• Pathologic Stage

Mastectomy Margins Lymph Nodes

Pathologic Staging



“Automated medical chart review for breast cancer outcomes research: a 
novel natural language processing extraction system” (BMC May 2022)
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Why NLP? Second Answer: Great Advances

 Pre-trained language models - biggest advances in NLP 
this decade
 Trained with a large dataset while remaining agnostic to the 

specific tasks they will be employed on

 E.g., BERT: created by Google with from English Wikipedia with 
2,500M words

NLP -> Natural Language Understanding

 Many variants, e.g., BioBERT, PubMed BERT, RoBERTa

 Later models, e.g., T5, GPT2, GPT3, and ChatGPT

 Designed to be “fine-tunable” with specific tasks and domains, 
e.g., questions and answers
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Why NLP? BERT Q/A examples

 From: //huggingface.co/tasks/question-answering

 E.g., text: “I am Sarah and Vancouver is my home”

 Q1: “what is my name”

 Ans1: “Sarah”

 Q2: “where do I live”

 Ans2: “Vancouver”

 E.g., text: “The Amazon rainforest, also known in English as 
Amazonia or the Amazon Jungle”

 Q1: “Which name is also used to describe the Amazon rainforest”

 Ans: “Amazonia”

 We use it for healthcare applications and mineral mining governance 
(environmental waste management)
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What about User Generated Content (UGC)?

12

 Clinical documents written by clinicians and healthcare 
professionals

 What about listening to the patients, their families and 
care-givers?

 Their opinions, experiences, needs, feelings, mood, etc. 

 How is UGC different from formal documents?

 Diverse backgrounds

 Diverse writing styles: use of words, length, may not even be 
grammatically correct

 More subjective

 Different genre: forums, chats, conversations, blogs
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Listening to the Patients

Patients’ conversationsNeeds detection
What needs are patients 

seeking?
e.g., health information, 

social support, …

Dialog acts
Why are patients talking 

about certain topics?
e.g., explain information 
on a diet, ask questions 

on skin rash, sharing 
emotions on a treatment

Discourse coherence
Is what the patient says 

coherent?

Topic modeling
What are patients talking 

about? E.g., diet, 
treatment, doctors, …
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Text Analysis for Chronic Disease Management

 Topic modeling
 Research task: topic modeling with an ontology
 Data: mDAWN social media discussions

 Needs detection
 Research task: needs prediction
 Data: American Cancer Society online discussion forum data

 Dialog acts
 Research task: dialog act prediction
 Data: American Cancer Society online forum data

 Discourse coherence
 Research task: dementia detection
 Dementia datasets (speech and text)
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• Understand their needs as a first step to recommending 
interventions

• But Manual identification of needs too labor intensive and
time consuming

• Develop automated algorithms to classify types of needs
• Data consists of: 52,000+ posts (2006-2016)
• Collected from the Cancer Survivors Network online 

peer-support forum (http://csn.cancer.org)

Online Discussion Forums, e.g., American Cancer Society



 Physical needs: “I have finished 
the 6 rounds of carbo/taxol and 
am slowly recovering from the 
assault of the treatment.  Has 
anyone experienced joint pain 
after tx? I've noticed increasing 
pain in both hips and recently 
knee pain."

 Cross validation accuracy: 85%

 Emotional needs: “I will have 6-8 months 
of chemo. I am so scared. I do not know 
what to expect. I am having a hard time 
dealing with this and am going to attend a 
support meeting in April. I having a 
difficult time staying positive and upbeat. 
I have read such amazing stories on here I 
hoping that this board will help me as 
well..((((HUGS TO ALL))))”

 Cross-validation accuracy: 80%

“Neural Prediction of Patient Needs in an Ovarian Cancer 
Online Discussion Forum” (Canadian AI, 2019)



Another Use Case: Mental Health and Psychiatry
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 Part 1, Clinical documents: in psychiatry, even clinical documents, e.g., 
psychiatric assessments, are highly unstructured

 Part 2, User generated content: social media posts

 To monitor at-risk adolescents through their instant messaging content 
(because over 80% of all youths are heavy users of social media)

 Develop a recommendation system for early intervention

 Dataset: 1,000 youths admitted to hospitals through emergency room 
due to self-harm: their admission notes, discharge summaries, and their 
social media posts 6 months prior to admissions

 One predictive model we are building: identify high-risk re-admission 
cases



A Platform for Online Psychiatric Analysis on 
Social Media Posts
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 A Health Canada funded project to monitor the mental health of 
university students across Canada, eg., UBC, U of Toronto, etc.

 Enrolled 35,000 university students across Canada

 UBC students alone generated 300,000+ Reddit posts between 
2020 and 2022

 Selected questions of interest: 

 What do they talk about? 

 What stress them out?

 How does specific stress change over time?

 How does specific stress differ across campuses/locations?



GMDS/TMF 2021 19

Schematic Diagram of the Linked Analysis Platform



Two Final Remarks
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 Multi-lingual issue

 Most NLP research driven by English corpora

 One way to try a different language X is by automatic translation of 
documents in X to English, and apply the English models

 A longer-term way is to apply transfer learning to English large language 
models to build models from documents in language X

 Even though we talk about written text so far, what about speech 

 Huge amounts of data collected by speech technologies, e.g., Siri for Apple, 
Alexa for Amazon

 One way is to automatically transcribe speech to text and apply NLP-based 
models



Thank You!
rng@cs.ubc.ca

//dsi.ubc.ca
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Future Work in Mental Health
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 Adapt the model to monitor at-risk adolescents through their 
instant messaging content (because over 80% of all youths are 
heavy users of social media)

 Develop a recommendation system for early intervention

 Apply transfer learning to build models for other populations:

 Cancer patients

 Patients with serious chronic conditions who stay at home

 Seniors 

 Isolated individuals, e.g., covid-19


